翻訳と辞書
Words near each other
・ Odd Man Out (UK TV series)
・ Odd Man Out test
・ Odd Man Out Tour
・ Odd Martinsen
・ Odd Modern
・ Odd molecule
・ Odd Molly
・ Odd Mom Out
・ Odd Myre
・ Odd Mæhlum
・ Odd Nansen
・ Odd Narud
・ Odd Nerdrum
・ Odd Nordstoga
・ Odd Nosdam
Odd number theorem
・ Odd Obsession
・ Odd Ogg
・ Odd Olsen
・ Odd Olsen Ingerø
・ Odd Omland
・ Odd One
・ Odd One In
・ Odd One Out
・ Odd Project
・ Odd Rasdal
・ Odd Reidar Humlegård
・ Odd Reinsfelt
・ Odd Reitan
・ Odd Riisnæs


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Odd number theorem : ウィキペディア英語版
Odd number theorem

The odd number theorem is a theorem in strong gravitational lensing which comes directly from differential topology. It says that the number of multiple images produced by a bounded transparent lens must be odd.
In fact, the gravitational lensing is a mapping from image plane to source plane M: (u,v) \mapsto (u',v')\,. If we use direction cosines describing the bent light rays, we can write a vector field on (u,v)\, plane V:(s,w)\,. However, only in some specific directions V_0:(s_0,w_0)\,, will the bent light rays reach the observer, i.e., the images only form where D=\delta V=0|_. Then we can directly apply the Poincaré–Hopf theorem \chi=\sum \text_D = \text\,. The index of sources and sinks is +1, and that of saddle points is −1. So the Euler characteristic equals the difference between the number of positive indices n_\, and the number of negative indices n_\,. For the far field case, there is only one image, i.e., \chi=n_-n_=1\,. So the total number of images is N=n_+n_=2n_+1 \,, i.e., odd. The strict proof needs Uhlenbeck’s Morse theory of null geodesics.
== References ==

* Chwolson O., 1924. "Über eine mögliche Form fiktiver Doppelsterne", "Astronomische Nachrichten" 221, 329-330.
* Burke W.L., 1981. "Multiple gravitational imaging by distributed masses", ''Astrophysical Journal'' 244, L1.
* McKenzie R.H., 1985. "A gravitational lens produced an odd number of images", ''Journal of Mathematical Physics'' 26, 1592.
* Kozameh C, Lamberti P. W., Reula O. Global aspects of light cone cuts. J. Math. Phys. 32, 3423-3426 (1991).
* Lombardi M., An application of the topological degree to gravitational lenses. Modern Phys. Lett. A 13, 83-86 (1998).
* Wambsganss J., 1998. "Gravtational lensing in astronomy" http://mathnet.preprints.org/EMIS/journals/LRG/Articles/lrr-1998-12/
* Schneider P., Ehlers J., Falco E. E. 1999. "Gravitational Lenses" Astronomy and Astrophysics Library. Springer
* Giannoni F., Lombardi M, 1999. "Gravitational lenses: Odd or even images?" "Class. Quantum Grav." 16, 375-415.
* Fritelli S., Newman E. T., 1999. "Exact universal gravitational lens equations" "Phys. Rev." D 59, 124001
* Perlick V., Gravitational lensing in asymptotically simple and empty spacetimes, Annalen der Physik 9, SI139-SI142 (2000)
* Perlick V., Gravitational lensing from a geometric viewpoint, in B. Schmidt (ed.) "Einstein's field equations and their physical interpretations" Selected Essays in Honour of Jürgen Ehlers, Springer, Heidelberg (2000) pp. 373–425
* Perlick V., 2010. "Gravitational Lensing from a Spacetime Perspective" http://arxiv.org/abs/1010.3416


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Odd number theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.